Autonomous Agents

Autonomous AI agents can plan, execute, and adapt security research tasks with minimal human intervention. They break down complex objectives into actionable steps and self-correct based on results.

High Risk

Autonomous agents execute tasks independently. Always run in isolated environments with proper monitoring and kill switches. Review all actions before allowing execution on real targets.

AutoGPT

πŸ€–

AutoGPT

github.com/Significant-Gravitas/AutoGPT

An experimental open-source application showcasing GPT-4's capabilities as an autonomous agent. It chains together LLM "thoughts" to accomplish user-defined goals.

Installation

# Clone repository
git clone https://github.com/Significant-Gravitas/AutoGPT.git
cd AutoGPT

# Set up environment
cp .env.template .env
# Edit .env with your API keys

# Install dependencies
pip install -r requirements.txt

# Run AutoGPT
python -m autogpt

Security Research Example

Name: SecurityResearcher
Role: An AI security researcher that performs authorized vulnerability assessments

Goals:
1. Enumerate subdomains of authorized-target.com
2. Identify open ports and services on discovered hosts
3. Check for common web vulnerabilities using nuclei
4. Generate a detailed findings report
5. Suggest remediation steps for each finding

AutoGPT will:
- Break down goals into tasks
- Execute reconnaissance tools
- Analyze results and adapt approach
- Document findings automatically

Key Features for Security

Internet Access

Browse web, search for exploits, access security databases.

Code Execution

Write and execute Python scripts for custom tools.

File Operations

Read/write files for data persistence and reporting.

Memory

Long-term memory for context across sessions.

AgentGPT

🌐

AgentGPT

agentgpt.reworkd.ai

A web-based autonomous AI agent platform. Deploy agents directly in your browser without local installation.

Advantages

  • No local setup required - runs in browser
  • Visual task execution feedback
  • Easy to share and collaborate
  • Rate-limited for safety

BabyAGI

πŸ‘Ά

BabyAGI

github.com/yoheinakajima/babyagi

A simplified autonomous agent focused on task management. Creates, prioritizes, and executes tasks based on previous results.

Task Loop Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      BABYAGI LOOP                             β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                               β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚   β”‚   Task      │────▢│  Execution  │────▢│   Result    β”‚   β”‚
β”‚   β”‚   Queue     β”‚     β”‚   Agent     β”‚     β”‚   Storage   β”‚   β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚          β–²                                       β”‚           β”‚
β”‚          β”‚                                       β–Ό           β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚   β”‚   Task      │◀───────────────────────│   Task      β”‚    β”‚
β”‚   β”‚ Prioritizer β”‚                        β”‚  Creator    β”‚    β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”‚                                                               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Security-Focused Agents

WhiteRabbitNeo

Uncensored Security LLM

A fine-tuned LLM specifically designed for cybersecurity without the typical safety restrictions. Available for local deployment.

Uncensored Local Only Ollama
# Run with Ollama
ollama pull whiterabbitneo
ollama run whiterabbitneo

# Or use with LM Studio
# Download GGUF model from HuggingFace

Custom Security Agents

Build custom autonomous agents for specific security tasks:

from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI

# Define security tools
tools = [
    Tool(
        name="NmapScan",
        func=run_nmap,
        description="Scan ports on a target"
    ),
    Tool(
        name="NucleiScan", 
        func=run_nuclei,
        description="Run vulnerability templates"
    ),
    Tool(
        name="SubdomainEnum",
        func=run_subfinder,
        description="Enumerate subdomains"
    )
]

# Initialize agent
agent = initialize_agent(
    tools,
    llm=OpenAI(temperature=0),
    agent="zero-shot-react-description",
    verbose=True
)

# Run autonomous assessment
agent.run("""
Perform a security assessment on authorized-target.com:
1. Find all subdomains
2. Scan for open ports
3. Check for vulnerabilities
4. Report findings
""")

Safety Controls

πŸ›‘ Kill Switch

Always implement a way to immediately stop agent execution.

⚠️ Approval Workflow

Require human approval for destructive or sensitive actions.

πŸ”’ Sandboxing

Run in isolated VMs or containers with limited network access.

πŸ“Š Logging

Log all agent actions for audit and review.

Critical Warning

Never deploy autonomous agents against systems without explicit written authorization. Autonomous agents can cause significant damage if misconfigured or misdirected.